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For the Navier--Stokes equations with vanishing viscosity we consider the plane non- 
linear problem of the motion of an incompressible liquid in the region D bounded by the free 
surface F and impenetrable walls S, due to the action of specified initial perturbations: 

O V + ( v , v )  v = _ v p + e 2 A v + g ,  divv----0; (1) ot 
vls : O; (2) 

8v 
p - - 2 e  ~ = p , . ,  ( x , y ) ~ r ;  (3) 

. ~ ( ~ - . ~ ) ~ W  ~ j = T ,  (x, v l ~ r ;  (41 

OF 
o-T + v . v F  = 0, (x,y) ~ F; (5) 

v = v , (x ,  v) (t = 0). (6) 

All the quantities in Eqs. (1)-(6) are dimensionless. Here e a = i/Re is a small parameter; 
Re, Reynolds number; n = (nx,ny) , unit vector of the internal normal to the free boundary 
F, and F(x,y,t) = 0, equation for F in implicit form. The liquid is set in motion by an 
initial velocity field, by initial elevation of the free boundary, and by an external sur- 
face stress (p,, T). The tangential stress on F is assumed to be small and of the order of 
0(ea). The problem is investigated assuming that the solid walls and the free boundary do 
not have points of contact. 

For vanishing viscosity ~ +0 boundary layers having different properties are formed 
close to the boundaries of the region. Close to the solid walls there is a layer of in- 
finitely large vorticity of the order of 0(I/E), and in the neighborhood of the free sur- 
face finite vorticity is produced. The equations of the boundary layer are nonlinear in the 
first case and linear in the second. In the external region (outside the boundary layers) 
the flow is approximately described by Euler's equations. 

The asymptotic expansions of the solution of problem (1)-(6) for low viscosity s § 0 
take the form 

N N N 

v~-, ~ ekvh (x, y, t) --', ~ ehWk (X, y, t; e) + ~ e~h~ (x, y, t; e), 
h~O h=O h=O 

N N N 

p .-. Y~ e~pk (x, y, t) + ~.~ ekr~ (x, y, t; el + ~_~ ehqk (X, y, t; e), 
h=O h=o h=0 

N 

h = 0  

(7) 

($(x, t) is the elevation of the free boundary). We will denote by D s and D F the regions of 
the boundary layers close to the solid boundary S and the free surface F. Then w k and r k 
are functions of the type of solutions of the problem of the boundary layer in DS, while h k 
and qk are functions of the type of solutions of the problem of the boundary layer in D F. 

The principal terms of the asymptotics vo, po, and to are found from the solution of 
the problem of the flow of an ideal incompressible liquid in the region Do bounded by the 
wall S and the free boundary ro, due to the action of specified initial perturbation (6) 

Ovo/Ot+(vo,  V)Vo = --VPo + g, div v o = 0~. (8) 
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vo 'nJs  --- Oi Vo = v . ,  ~o = ~ ,  (t = 0).  

Po = P , ,  O~olOt + v=O~olOx = Vyo, (x, U) ~ Fo. 

The functions v k and Pk in expansion (7), which define the flow in the region D, are 
found as a result of the first iterational process [1], and satisfy the linear systems 

ot + (vi, v)  vj = - -  VPk:+ Avh-2, divvh = O, 
i+9=~ (9) 

vkl~-o = O, (v~ + w h ) . n l s  = O, v - i  ~ o (k ~ i ) ,  

where n is the vector of the normal to S. The boundary conditions on the free boundary for 
system (9) will he given below. 

The functions of the boundary layer w k and r k manifest themselves in the region D s in 
the neighborhood of the boundary S and compensate the discrepancies when the adhesion condi- 
tions (2) are satisfied. To simplify the notation we will assume that the boundary S is 
rectilinear and is described by the equation y = 0. We will determine the equations which 
satisfy the function w k and r k. 

Suppose WxkJ Wyk, Vxk , Vy k are the projections of the vectors w k and v k on the 0 x and 
0y axesl respectively. We substitute the expansions (7) into (i), expand the known co- 
efficients in Taylor series in powers of y, take into account Eqs. (8) and (9), and assume 
hk = qk = 0 in D s apart from terms of a higher order of smallness. We introduce the expan- 
sion transformation y = es. Equating to zero the coefficients of c ~ gi,..., ~N in succes- 
sion~ we obtain equations for determining w k and r k. In particular, hyo = ro = r, = 0. As- 
suming W, = Wy, + Vylly=o, for Wxo , W, we derive the following system of nonlinear equations: 

Ow x~ -U Ow x~ Ow x~ OW x~ Ow x~ O~w x~ Ow x~ O Wz 
+ W~ ~ + sa + -- aW~o = , (i0) ot ' W . ~ o ~  ~ b ~  Os' oz + ~ = 0  

with the following initial and boundary conditions: 

wx0 = W1 = 0(t = 0), w~0 = 0 (s = o=),~ 

w~o = - - b ( x ,  t),~ W~ = 0 (s = 0). 

Here the coefficients a(x, t), b(x, t) are known if we determine the corresponding 
flow of an ideal liquid (8) 

a(x, t) = 6qyyo/Oyly=o,: b(x~ t) -= v=o]~=o. 

Note  t h a t  s y s t e m  (10) l e a d s  to  t h e  e q u a t i o n s  o f  t h e  P r a n d t l  b o u n d a r y  l a y e r  [2] i f  we 
p u t  

ux = wxo q- b,, uy = wvi + sa + v,vi]8=0. 

The f u n c t i o n  r a  i s  found  f rom t h e  r e l a t i o n  

$ 2 o,%, (o<,,,, I 
r :  = 2 L ~ ot W . o ~  - (w~ + sa) ~ - b - ~ -  - -  ~w,~ - t o,  iv=o + ~ ~ 7  wxoj ds. 

The higher approximations of 
solving problem (9) for k = m. We 

Ow=, Owxx 
'or  + W1-F;- + 

Owx o 02wxl 
+ W 2 - ~ - - -  as~ 

8V =o I 

- -  OV Iv=o 

w m and r m satisfy linear equations and are found after 
will write the equations to a first approximation 

awx I Owxl @w~1 @w~ o 
w~o ~ § sa ~ + b ~ -- aw~ + w~, ~ + 

a~0 ] a~o [a~ a'~o ] 
OxOy ]u=0 

[ O%z, ~ 0 2 % o ]  OWxo Owxt OW~ 
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with the corresponding boundary and initial conditions 

w~=0(s=~)~w~+,~=0~W~=O@=0L 
w ~ = W ~ = O  (t=O)~ 

where Wa = Wy~ + Vy~[Y=o. 

We will now determine the boundary-layer functions h k and qk which are concentrated in 
the neighborhood of the free boundary and compensate the discrepancies which arise when the 
dynamic condition is satisfied for the tangential stress on r. The quantities h k and qk are 
constructed as in [3]. In the region of F we introduce fixed local coordinates p, ~ given by 

z = X(t~ ~) + pn,=o ,~; y = Y(t,: ~) + pnuo,~ 

where p is the distance of the point (x, y) from I'o -- the free surface of nonviscous flow 
(8)~ nxo(t, ~), nya(t, ~), components of the unit vector of the normal to Fo, and X(t, ~), 
y = Y(t, ~), parametric equation of the contour Fo. We substitute (7) into (i) and we write 
the equations obtained in local coordinates. We expand the known coefficients in Taylor 
series in powers of p, we take into account the correctness of the relation ~p/~t + vo.Yp = 
0 for p = 0, and we assume p = eE. Apart from terms of higher order of smallness we assume 
w k = r k = 0 in D F. Equating to zero the coefficients of ~k, for hk (k ~ i) we obtain the 
following system of linear equations: 

0hr k Ohcp h Oh_~ 
Ot ~- ~at (t, q)) ~ q-- bl (t, q~) ~ - -  a#~r = ~162 + Fa, og 2 

Oh~ 6 - t  ahr = O, u ~ (~hp, a-t) + o~ 0---'~ 

aqh - -  2 L[•176 + . - I  OVpo] ,. 

(ll) 

with the boundary conditions 

Oh~ph _ [6_~o%,h_~ o%.h_~ ] §  (~ =0) ,  
a~ ----t ~ + op §215162 

h a = q a = O  ( ~ =  oo), h a = O  (t = 0 ) .  

The coefficients Fk, Dk, and M k are known and are not written in view of their complexity, 
while F~ = Dx = Mx = Da = 0. Here 

0 
a~ (t, q)) = ~-~ [Pt + vo'vP]o=o, b 1 (t, q~) = [q)t -~ vo.Vq)]o=o , 

and • and 6 are the curvature and Lam~ coefficient of the contour Yo. Note [3] that ho = 
hot = qo = qt = 0. As in [3], the solution of system (Ii) is found in quadratures. 

The functions ~k, determining the asymptotic form of the free boundaryj are found to- 
gether with v k when solving problem (9). The boundary conditions on the boundary r for 
system (9) are obtained by applying the first and second iterational processes [I] simul- 
taneously to condition (3), and in local coordinates have the form 

Ovo, k-2 (12) 
P k + r k + ~ h  - - 2 ~ + Q a = O  ( p = O ) ,  

where k~ 11 v-t = 0; Qt = 0. 

Assuming that F = --p + C (t, ~) in (5) and using the same reasoning as when deriving 
(12), we obtain the following equations for determining 5k: 

ash ~_ bl (t,  •) ~ . - -  a 1 (~, qD) ~h = [b'p~ n.ok]o=O -~ Ek, at (13) 

Ca = O(t---- 0), E1 = O. 

N o t e  t h a t  C0 = 0 s i n c e  p = 0 i s  t h e  e q u a t i o n  o f  t h e  b o u n d a r y  Foo 
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We will now write the problem of determining the external flow in D to a first approx- 
imation. The functions v, and p, together with 5, satisfy system (9) and (13) for k = i. 
The boundary condition for y = 0 is obtained by assuming s = ~ in the relation W, = Wy, + 
v *I =o and assum, ing that w , is a function of the boundary-layer type, i.e., Wy, = 0 (s = =) "y y . Y _ �9 
Thus, Vy,[y=o=W, Is=~. The boundary condition on r follows from (12) for k = I. We will 
assume that the flow of an ideal liquid (8) is potential, i.e., v~ = V#o, in which case the 
vector v, is also potential (v, = re,), and from (9) we derive the integral 

p~ + ~ , / O t  + V O o V O ~  = 0 .  (14) 

Eliminating p, from (12) and (14) and assuming k = I in (13) we obtain the problem of 
determining the external flow in D to a first approximation 

hcl), = O, 

- = ~,~1 ( p  = 0), 
O01/Ot + Vr162 -- ~,@0/0p = 0 (p = 0), 

o~/oy] ~=o = W,I  . . . . .  V ~  = ~, = O(t = 0) .  

(15) 

Thus, for asymptotic integration of system (1)-(6) we first solve the problem of the 
flow of an ideal liquid (8) and then determine the flow in the boundary layer close to the 
solid wall (I0) and the first approximation of the external flow (15), and then the flow in 
the boundary layer close to the free boundary. Further, the higher approximations are de- 
termined in the same sequence. 

Example. Consider the effect of low viscosity on the nonsteady state flow of an in- 
compressible liquid in a circular cylinder. The region Do filled with ideal liquid repre- 
sents thecylinder--H(t) ~ z~H(t), r~R(t). Here (r, 8, z) are cylindrical coordinates. 
The side boundary Fo(r = R/t) is free, and on Fo the pressure suffers a discontinuity (p -- 
Po = o/R, where o is the surface tension). The impenetrable walls z = ~H(t) move opposite 
to one another with constant velocity V. The solution of Euler's equations ignoring gravi- 
tational forces has the form [4] 

v~o = ~ r ,  ~ o  = - -  2 t z ,  Voo = 0 ,  Po  = 0 , 5 ( t  ~ +  t ~ ) ( R  ~ - -  r ~) + ~ / R ,  

t ( t )  = ( ~ / 2 ) ( t  - -  ~t) - t /2 ,  H(t) = h ( l  - -  ~ t ) ,  R = R o ( l  - -  ~ t )  - t n ,  ~ = - - V / h  = c o n s t .  

The free boundary Fo with t = 0 is a circular cylinder and as t increases the cylinder 
becomes flattened to the plane z = 0. 

Consideration of the viscosity leads to expansions (7) everywhere apart from a small 
region of the line contact of the free boundary and the walls S. The asymptotics of the 
flow in the neighborhood of the line of contact are constructed in [5]. The main term of 
expansion (7) we satisfies equations of the form (i0) in cylindrical coordinates. We will 
introduce the function ~(s, t) using the equation Wro = r~/~s, Wz, = 25 -- Vzxlz = H, in 
which case, in the neighborhood of the wall z = H, Eq. (i0) has the form 

O'"+40~"--20'2--8~'+2~"= O, (16) 
~ ' ( 0 )  = - - I ,  ~ ( 0 )  = r  = O~ 

here 
] / ~  H - - z  (:I:) (S) ---- ~ "VI - ~,t 

s =  2 1 / i - z t  - 7 - - '  V X  

Equation (16) was integrated numerically. The function ~(s) decreases monotonically 
from zero to the minimum value 7=-0.2063 for s = =. Hence, we have determined Vz, lz=• = 

• 2~/r - ~t 

We will now determine the first approximation v,, p,, and ~i in the external region 
(outside D s and DF). In view of the potential nature of the flow of an ideal liquid we have 

cO(I), ~cOt q- trOCI),/Or - -  2tzO(Ih/Oz -F Pl = 0,: 

6O 



where v, = Vr For r ~ we obtain problem (15) in the region Do 

Acbl = 0, 

acb~lat + TRa@~lar - 2Tzacb~/az + ( ~  + .~,)R~ + cr (a~laz  ~ - ~ ,R -~) = 0 (r = R),: 

O~l/at - -  2 ~ : z O ~ l / a z  - -  ~:~1 = O c b J a r  ( r  = R ( t ) ) , j  

o ~  2 V ' ~  (z = • t t ) .  
~--~ = + V ~--~-fi t 

Taking into account the symmetry of the flow the solution of the last problem can be 
obtained in the form 

= - I ( E ~b~ 2"1/1~ (1 --~.t)-sn(2z~ r ~) + ~ cb~l(t) o\~t(i-~-_i~l ~os~_~,  ~ = ' inkz- ~t" 
4h k=0 ~=o 

The functions Ck*, Ck* satisfy a system of ordinary differential equations and can be 
obtained numerically. In particular, ~ @,, r can be obtained explicitly: 

The contribution to the elevation of the free boundary from the boundary layer functions 
h k and qk is of the second order of smallness and is ignored here~ It follows from an analy- 
sis of the equation for ~,(t, z) that the free boundary is deformed with time, becoming more 
and more convex. 
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